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Axisymmetric convection in a rotating sphere. 
Part 1. Stress-free surface 
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This paper examines large-scale nonlinear thermal convection in a rotating self- 
gravitating sphere of Boussinesq fluid containing a uniform distribution of heat 
sources. Conservative bite-difference forms of the equations of axisymmetric 
laminar motion are marched forward in time. The surface is assumed to be 
stress free and at constant temperature. Numerical solutions are obtained for 
Taylor numbers in the range 0 < A Q 104 and Rayleigh numbers with 

Re Q R 5 IOR,. 

For high Prandtl number (P  > 5) the solutions are steady and most of them 
resemble the solutions of the linear stability equations, though other steady 
solutions are also found. For P 5 1, the steady solutions have horizontal wave- 
number I = i and nearly uniform angular momentum per unit mass, rather than 
nearly uniform angular velocity. This rotation law seems to be independent of 
many details of the model and may hold in the convective core of a rotating star. 

1. Introduction and summary 
The structures of many stars and planets are known to be greatly influenced 

by thermal convection in their interiors and by rotation of the body as a whole, 
but though the separate effects of these processes have been fairly well studied, 
their interaction, especially for well-developed flows in a sphere, has not. This 
paper examines the combined effect of bulk rotation, nonlinearity and spherical 
geometry on a convecting system, and will show by numerical integration of the 
(axisymmetric) equations of motion that the interaction of these effects can pro- 
duce behaviour which would not be predicted by considering them in isolation. 

In  particular, under certain conditions, the meridional motions can be suffi- 
ciently strong to redistribute the angular momentum of the system, resulting 
in a steady state like that shown in figure 7, in which the angular momentum per 
unit mass is nearly uniform over the convecting region. The detailed fluid dyna- 
mics of this particular situation are discussed in $ 6, and its application to models 
of rotating stars in $7,  where it is suggested that this result may resolve a de- 
generacy in the theory of such stars which has so far hindered comparisons with 
observation, by fixing the relation of the observable velocity at the surface to 
the unobservable angular velocity of the interior. 

The model system considered in this paper is just complicated enough to 
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show all the influences mentioned above, but sufficiently simple that its exact 
equations of motion can be solved numerically on present-day computers. The 
model consists of a uniformly heated self-gravitating sphere of Boussinesq fluid. 
The temperature a t  the surface is held constant, and the surface itself is taken 
as stress free, a reasonable first approximation for the convective core of a 
massive star. A later paper will describe the case of a rigid (no-slip) surface, a 
better model for the fluid core of a planet. 

In  order to treat a wide range of flow parameters without exorbitant use of 
computer resources, only axisymmetric flows are considered. Though stability 
theory for this model (Roberts 1968; Busse 1 9 7 0 ~ )  suggests that such flows are 
unlikely to occur a t  very high rotation rates, they can still reveal many of the 
effects of nonlinearity, bulk rotation and spherical geometry, and are therefore 
of intrinsic fluid dynamic interest. 

This paper exhibits three ways in which an axisymmetric motion can over- 
come the restraining effect of rotation expressed by the Taylor-Proudman 
theorem: namely by viscous transfer of angular momentum ( § 5 ) ,  by close 
packing of cells ( $ 5 )  and by nonlinear advection of angular momentum ($6) .  
These mechanisms are all relevant in the non-axisymmetric case, though they 
may take a different form. In  the absence of rotation (§4), the assumption of 
axisymmetry is not so restrictive, as shown by the linear theory of Chandrasekhar 
(1961, chap. 6) ,  which is independent of the azimuthal wavenumber m, and by 
the numerical experiments of Young (1974), who found that axisymmetric 
solutions were often preferred, and even where they were not preferred, they 
still gave a fair guide to the gross behaviour of the system. 

Though much previous work has shown that rotation inhibits the onset of 
convection in a variety of situations (Chandrasekhar 1961), the effect of rotation 
on a strongly nonlinear convective flow has so far been studied only for the case 
of a plane layer heated from below. Most theoretical investigations of this case 
(e.g. Veronis 1968; Xomerville & Lipps 1973) have used equations which fail to 
specify the precise position in the system of the axis of rotation, thereby concealing 
the important physical distinction between angular momentum and angular 
velocity, and making it difficult to interpret the effect of the convective motions 
on the original rotation. This difficulty and the related one of choosing a horizon- 
tal wavenumber for the flow are automatically overcome by explicitly consider- 
ing the spherical geometry appropriate to a stellar core. This also introduces 
another effect which may be important, namely that the angle between the 
buoyancy forces and the rotation forces varies with latitude, so that motions 
near the poles differ qualitatively from those near the equator even if the heating 
is uniform. 

A clearer feedback of convection to the underlying rotation, in the form of an 
equatorial acceleration a t  the surface, was found by Busse (1970b, 1973) and 
Durney (1970) in their studies of mildly nonlinear convection in a slowly rotating 
spherical shell. They found that the preferred mode had m N 7, the ratio of the 
inner to the outer radius of the shell. In  the present case 7 = 0, so that axi- 
symmetric motions (nz = 0 )  may be more relevant here than in a shell. 

The precise formulation of the model and its equations of motion is given in 
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FIGURE 1. Cases computed with (a)  A = 0, ( b )  P = 5, A > 0 and (c) P = 0.2, A > 0. 
Symbols indicate the type@) of sustained flow found at each Prandtl number P,  Taylor 
number A and Rayleigh number R ; + , steady single cell ; *, steady double cell ( E  = fall- 
ing at equator, P = falling at  poles); A, steady triple cell; 0, sustained (single-cell) 
oscillation. Curve Re is the 'exchange of stabilities' according to  Roberts (1968); curve 
R,, is the onset of overstability, as found here. Note the existence of several solutions at 
one (A, R )  with P = 5 ,  and of oscillatory solutions with P = 0.2, but not the converse. 
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Q 2, and the finite-difference schemes used to solve the equations are described in 
$3. The flow is determined by the initial conditions and three dimensionless 
parameters defined in Q 2: the Prandtl number P, Taylor number A and Rayleigh 
number R. The numerical scheme is effective for only a limited range of (P, A, R), 
namely 0.1 5 P 5 10, 0 6 A 5 lo4, 0 6 R 5 lo6, but this is sufficient to exhibit 
the three major regimes of ‘two-dimensional’ convection. In  accordance with 
earlier theoretical (Chandrasekhar 1961 ; Veronis 1968) and experimental work 
(Rossby 1969) on a plane layer heated from below, the parameter space divides 
into three distinct regions: (a)  A = 0, ( b )  A > 0, P large and ( c )  A > 0, P small, 
the results for which are described in 944, 5 and 6 respectively. Figure 1, which 
shows the form of the solution(s) found at each (P, A, R) studied, illustrates the 
differences between the regimes. 

The flows with A = 0 (figure l a )  allow simple physical interpretation, un- 
cluttered by the effects of bulk rotation. Though a single-cell solution is most 
common, some higher modes can be forced a t  sufficiently high Rayleigh numbers 
by taking suitable initial conditions. The two-cell mode shows an interesting 
distinction between the rising and falling plumes. Varying the Prandtl number 
between 0.1 and 10 has remarkably little effect on these flows, thus allowing a 
useful comparison with the similar computations of Hsui, Turcotte & Torrance 
(1972) with P = 00 and A = 0. 

The case of a rotating system with ‘large’ P is represented here by P = 5 
(figure 16). Nonlinear effects, such as advection of vorticity, are weak and most 
of the well-developed flows have the same form as the solutions of the marginal- 
stability equations, i.e. as A increases, the cells are compressed normal to the 
axis, with a corresponding rise in wavenumber. Though there is a weak tendency 
for the number of cells to increase with Rayleigh number, a range of solutions 
can again be obtained by varying the initial conditions. 

With a ‘small’ Prandtl number (represented here by P = 0.2; figure l c ) ,  
rotation allows convection to occur as oscillatory motions a t  Rayleigh numbers 
for which the static solution is stable a t  large P. Oscillations of remarkably large 
amplitude can be sustained and are described in 4 6. At higher Rayleigh numbers, 
nonlinear effects force the flow to be of the form in figure 7, with a single large 
convection cell maintaining a region of uniform angular momentum. 

2. Mathematical formulation of the model 
2.1. Equations of motion 

The full equations of thermal convection in the Boussinesq approximation may 
be written in the form 

au/at + u. vu + 2 8  x u = - (Vp)/p + ga(T - T,) + YV2U, (1) 

(2) 

divu = 0,  (3) 

i?T/at = H - div (uT) + KWT, 

in which u(x) is the fluid velocity, measured in a frame rotating with uniform 
angular velocity with respect to an inertial frame, p is a modified pressure, p 
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is the (nearly constant) density, g is the acceleration due to gravity, a is the 
coefficient of thermal expansion, T ( x )  is the actual fluid temperature, T,(x) is 
that in static equilibrium, v is the kinematic viscosity, Kis the thermal diffusivity, 
and H‘ = Hpcp is the internal heating per unit volume per unit time, c p  being 
the specific heat. 

For a uniform self-gravitating fluid sphere of radius ro, the inward gravita- 
tional force per unit mass a t  a radius r from the centre is 

g(r )  = -$npGr = - g( r )1 ,  (4) 

where G is the gravitational constant and 1 is a unit vect,or. 
In  conductive equilibrium, the temperature distribution is given by 

T,(r) = (H/~K)  (r; - r2) .  ( 5 )  

We may take (1)-(3) to be dimensionless by taking the units of length, time and 
temperature to be ro, r$/K and Hr;/K respectively. This reveals that the system 
is characterized by only three independent dimensionless parameters; we take 
these to be the Prandtl number 

P = V/K, (6) 

the Taylor number 
and the Rayleigh number 

A = (2Qr@)2 (7) 

We shall neglect the centrifugal force compared with true gravity; formaIly 
speaking, we take the limit 

a + O ,  g(r,)+oo, ag(ro) = constant. (9) 

This also allows us to neglect distortion of the outer surface by rotation. 
Throughout this paper, we shall use spherical polar co-ordinates (r, 8,  $) such 

that 0 = 0 is the axis of rotation. We shall refer to the point ( r  = 1,0 = 0) as 
the ‘north pole’. We consider only axisymmetric motions, so that a/a$ = 0. 
Then (3) allows us to define a (Stokes) stream function $such that at the position 
r = ( r ,  O , $ )  the velocity is 

and the vorticity is 

where s = sin 0. 
We shall occasionally use cylindrical co-ordinates (w, $, z )  in which 

m = rs, z = rcos6 (11) 

are respectively displacements perpendicular to and parallel to the axis of rota- 
tion (which is the z axis), and $ is as before. The velocity a t  (a, $, z )  will be de- 
noted by ( U ,  V ,  w). 
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We eliminate the pressure p by taking the curl of (l) ,  which becomes (after 
using standard vector identities) 

ao/at = v x (U x o ) + v  x (U x 2 8 )  + v  x (gam)-Yv x (v x a), (12) 

the $ component of which can be expanded as 

The $ component of (l), usually written as (Batchelor 1967, p. 601) 

(w sin 8 + u cos 8 )  

= - v$ . curl curl u, (14) 

may be transformed by standard vector identities into a form more explicitly 
expressing the conservation of angular momentum L = v a  + Qm2, namely 

av i 0 V -+- div (uvrs) +- div (ur?s2) = - [divgrad (vrs) - 2 div (&)I, (15) at rs rs rs 

where & = (sin 8, cos 8 , O )  is a unit vector perpendicular to the axis. Similarly, 
(13) may be written in the form 

where 6’ = c/rs corresponds to the circulation around a small fluid element. 
Finally, it follows analytically from (10) that 

which must be satisfied in a consistent solution. 

2.2 .  Conditions at surface and axis 

For simplicity, we take the outer surface to be a t  constant temperature, and to 
be undistorted by rotation or rising plumes. Then, neglecting irrelevant additive 
cons tan ts , we have 

which, with (17), implies 
T = $ = O  at r = r o ,  (18) 

5 = - (rs)-la2@,/ar2 at r = ro. (19) 

For an axisymmetric system, the condition of zero tangential stress (and there- 
fore zero tangential shear) at the surface implies 

a v a a$/& (--) = ar (T) = o a t  r = ro. 
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At the axis, the axisymmetry and the requirement that the angular velocity be 
finite imply $ = c = v = O  at r = O  or s = O .  (21) 

3. Numerical method 
3.1. Choice of method 

All the results described below have been obtained by solving finite-difference 
analogues of ( Z ) ,  (13), (15) and (17), subject to the boundary conditions (18)-(20) 
and the axis conditions (21). These particular equations were chosen, in pre- 
ference to other analytically equivalent forms, because even in their finite- 
difference forms, they express the conservation of matter, angular momentum 
and energy. 

Difference methods are favoured in a spherical geometry as they combine 
reasonable accuracy with ease of implementation. Galerkin methods (Orszag & 
Israeli 1974) are most useful in a rectangular geometry, where the fast Fourier 
transform can be used to advantage, while finite-element methods (Brebbia & 
Connor 1974, p. 325) are better in more irregular geometries. The analyses of 
Moore, Peckover & Weiss (1973) and Morton (1971) suggest that, for problems 
like that considered here, conservative difference schemes of second-order 
accuracy are the simplest to give reasonable accuracy. Higher-order schemes 
do not yield an increase in overall accuracy proportionate to their great,er com- 
plication, while non-conservative schemes give unacceptable distortion of the 
physics. 

The numerical method used is therefore an extension to spherical geometry of 
the conservative second-order scheme of Moore et al. (1973). The details are 
given in an appendix, as they may be useful for other work on spherical flows, 
and so that readers may independently assess the scheme. 

3.2. Accuracy and stability 

In  the present scheme both sides of the difference equation refer to the same 
point in space-time, and so time-dependent solutions can be followed accurately, 
which is an advantage when these are the physically interesting solutions, as in 
$6.3. Difference equations which do not have this property are both difficult to 
interpret physically and prone to numerical instabilities and inaccuracies 
(Morton 1971). 

The divergence terms in (2) represent fluxes of energy (T) from neighbouring 
elements of fluid. As shown by Roberts & Weiss (1966), by deriving one’s finite- 
difference equations as explicit representations of these fluxes, one ensures that, 
the difference scheme merely redistributes the energy input by the sources H ,  
as in the physical system-a desirable property not shared by many other 
numerical schemes. The difference form (A 4) of (15) would similarly merely 
redistribute angular momentum were it not for a subtle error in the boundary 
conditions, discussed below. 

The truncation errors of all the formulae used in the interior are formally of 
second order, except for (A l l) ,  which is of fourth order. However, though the 
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solution @jk of the difference equations a t  ( r i ,  8,) differs by second-order terms 
from that of the differential equations, evaluated a t  the same point, the former 
has a different physical meaning, namely the average value over the elementary 
volume centred on ( r j ,  6,). Unfortunately, the same value is used in the difference 
equations as the average over one face of the volume centred on ( T ~ + ~ ,  Ok), which 
introduces a different kind of second-order error (Roberts & Weiss 1966). The 
values of $, however, are meaningful as spot values. 

The numerical boundary conditions (18) are exact, while (A 15) and (A 16) 
are formally accurate to second order. Despite appearances (A 17) is accurate 
only to O(h),  because the second derivative is evaluated from only two indepen- 
dent values of $, namely $ J--l, k and $ J ,  k. The experience of Moore et al. (1  973) 
was that boundary conditions accurate to order n - 1 did not significantly impair 
the accuracy of a scheme accurate to order n in the interior, so the simple scheme 
(A 17) should give values of 5 that are adequately accurate, especially as no 
important conservation principle is associated with 6. 

The best way to estimate the effect of these truncation errors is not to evaluate 
the coefficients buried in the O(h2) symbolism, but rather to compare solutions 
obtained with meshes of different spacing (h,6), both with each other and 
(where possible) with known analytic solutions. For example, the numerical 
solution on a 16 x 16 mesh of (A 1) with @ = 0 yields a conductive temperature 
distribution differing by less than 0.01 yo from the exact solution ( 5 ) .  

Most of the results described below were obtained with a 16 x 16 mesh, as the 
results of Moore & Weiss (1973) indicated that this would give adequate accuracy 
for flows with R 5 20R,. A few of the runs were repeated with a 48 x 48 mesh, 
and it was found that the numerical values of $(r, e), T(r,  8) etc. obtained differed 
by less than 1 yo from those obtained on the coarser mesh, which gives confidence 
in the solutions. 

Comparison with independent ‘accurate ’ values not of the field variables 
themselves, but of gross parameters like RJR) gives a useful measure of the 
truncation errors. Indeed, this is how I estimated the range of (R, A, P) over 
which the computations were reliable. 

The importance of using conservative schemes was illustrated by the results 
obtained when the conservative difference scheme (A 4) for AvlAt was replaced 
by one based on the non-conservative equation (14). This gave a 20 yo difference 
in the computed values of $ and v, though the form of the solution did not 
change. 

By using Gauss’ theorem to integrate (15) over the whole sphere, it  can be 
shown that the boundary condition (20) on the tangential stress ensures that no 
angular momentum passes through the surface of the sphere. Unfortunately, 
the numerical condition (A 15), though formally an accurate analogue of ( Z O ) ,  
does not quite share this property. In  the computed flows, spurious angular 
momentum leaks through the boundary, though so slowly that consistent quasi- 
steady states can still be obtained in the range of (R, A, P) considered here, and 
i t  is these that are described below. It was found afterwards that this trouble 
arises from the treatment of the advection terms in (A 4) in the elementary 
volumes with T J - 1  < r < r J + 1 ,  which straddle the boundary. It would seem that, 
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for accurate results, it  is insufficient merely to represent a flux boundary condi- 
tion such as (20) to high formal accuracy while still applying one’s usual scheme 
throughout the interior; special formulae must also be used for points near the 
boundary, and the staggered mesh modified to fit. The effect of this leak on 
particular computed flows is discussed in $55:  and 6. 

The schemes are always stable provided that the time step satisfies the Cou 
rant-Friedrichs-Lewy conditions 

wA.tlh < 1, uAtIr8 < 1. (22) 

vAtlh2 5 I, KAt/h2 5 1. (23) 

For the diffusion terms to be reasonably accurate, one also requires 

In  normal running At is initially chosen to satisfy (23) and, at each time step, 
the program checks that (22) is satisfied. If not, then At is halved and computa- 
tion continues. 

The numerical scheme (including the solution of the elliptic equation (17)) is 
such that rounding errors are much less than truncation errors, even when using 
single-precision arithmetic on an IBM 370 (which works to only about 7 decimal 
places). 

4. Results with zero rotation 
For P 9 1, the condition (23) on At become irksome, and for P < 1, momentum 

diffuses so slowly that 8 very long time elapses before a steady state is obtained. 
Therefore, most of the computations with zero rotation were made with Prandtl 
number P = 1. Later calculations (54.3) showed that the qualitative effect of 
varying P was small when A = 0, thus allowing quantitative comparisons to be 
drawn with the earlier calculations of Hsui et al. (1972), who used a different 
numerical method to look at the same problem, but considered only the case 

A first check on the present program is to see that the numerical experiments 
agree with linear stability theory (Chandrasekhar 1961, p. 235) where the latter 
applies, namely to the growth of small disturbances from conductive equilibrium. 
The numerical experiments with A = 0 showed the predicted behaviour: in- 
stability set in as a direct (i.e. non-oscillatory) single-cell mode a t  

A =  0,P = 00. 

B, = (2.24 _+ 0.03) x lo3 

in excellent agreement with the value of 2214 given by linear stability theory. 

4.1. Single-cell flows with P = 1, A = 0 

No oscillatory flows were found with P = 1, A = 0;  given enough time the flow 
always reached a steady state, to which it was usually close after one or two 
turnover times. In  the units used here, the turnover time of a cell is 7, M $;I, 

where $m is the maximum value of the stream function. Figure 2(a )  shows a 
typical steady flow, obtained from an initial weak single-cell disturbance to 
conductive equilibrium. 
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T 

FIQURE 2. Contours of stream function @, temperature T and 'vorticity' 5' for steady 
convection in a uniformly heated fluid sphere. Flows are symmetric about the vertical 
diameter. Arrows show direction of flow; dashed contours of 5' show negative values. 
Prandtl number P = 1, Taylor number A = 0. 

R max @ max T max 5' 
(4 10 000 2.86 0.110 205 
( b )  10000 1.56 0.112 296 
(el 40 000 4-43 0.063 508 

We note that the hottest region of the system is no longer a t  the centre, but 
has moved nearer the surface, so that the same total heat flux through the 
surface can be maintained from a lower maximum temperature T, and a lower 
temperature T, a t  the centre than in the absence of convection. The average 
temperature gradient near the surface is the same as before, but the heat flow to 
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RIRC P 

FIGURE 3. Quantitative effect of varying (a )  the Rayleigh number R and ( b )  the Prandtl 
number P on single-cell flows with Taylor number A = 0. Plotted are the thermal effi- 
ciency M ,  maximum temperature T,,, and the maximum of the stream function $,,, 
(measuring average flow speed). Results at P = co (upper curve in ( a ) )  are from Hsui 
et al. (1972). 

the surface is quicker than in the absence of convection, so the temperature of 
the fluid is not raised so much by the internal heating. For example, the heat 
generated a t  the centre can now escape by advection as well as by conduction, 
so that the temperature gradient needed for conduction falls, and with it the 
value of T,. For a given form of convection cell, the parameter 

J!f = T , ( O ) / T ,  ( 2 4 )  

gives a reasonable measure of the efficiency of convection. 
Figure 3 (a)  shows how M increases with RIBc for single-cell flows, both when 

P = 1 (present results) and when 9 = 00 (results of Hsui et aZ.). As the Rayleigh 
number increases, the heat flux through the surface becomes increasingly aniso- 
tropic; i t  is concentrated in a thermal ‘boundary layer’ between the tempera- 
ture maximum and the surface, where the temperature gradient has increased 
from its conductive value. As this boundary layer gets thinner, so the number of 
mesh intervals spanning i t  decreases, and therefore so does the accuracy of the 
numbers computed. With 16 mesh intervals between the centre and the surface, 
when R N 2QB, the temperature can reach @4Tm a t  the first internal grid point 
and 0*7Tm at the second. Therefore, not much weight can be given to the actual 
numbers in the calculations of Hsui et al. with R N 50R, and even fewer mesh 
points, though their qualitative picture is probably correct. 

The contours of 5’ reflect the relative importance of advection and diffusion 
in the dynamics of the flow. For a single-cell mode, the solution of the linear 
equations (with zero advection) has falling off smoothly from a maximum a t  
the centre. At the other extreme, as the Reynolds number of the flow tends to 
infinity, the variation of 6’ is concentrated near the edges of the flow and 5‘ is 
effectively constant over most of the sphere (Batchelor 1956). (This behaviour, 
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suggested by (16), is why contours of 6’ are presented rather than g or Q = Qs.) 
The flow of figure 2 (a)  lies between these extremes; the advection and diffusion 
terms in (13) are of about equal magnitude; 

4.2. Uniqueness of the solutions with P = 1, A = 0 

Like those of Hsui et al. (1972) the present computations yield a stable single-cell 
solution at  all Rayleigh numbers considered. That is, this solution, once it has 
grown, is stable to small or moderate ( N 20 %) perturbations from other modes. 
For sufficiently high Rayleigh numbers, however, other stable solutions are also 
possible, even with a stress-free boundary, although Hsui et al. make no mention 
of them. 

In particular, a t  R = 10000, I find a stable two-cell solution with cold fluid 
falling a t  the equator (which will be referred to as the ‘ 2 E ’  mode), and at 
R = 40 000, there is also a two-cell solution, but with matter falling at the poles 
(the ‘ 22 ”  mode). These flows are shown in figures 2 ( b )  and ( c )  respectively. The 
reverse flows (2P a t  R = 10000 and 2E at R = 40000) are unstable. That is, a 
weak, or even a fully developed, flow of such a form spontaneously evolves into 
one of the stable forms. This sometimes requires a change of horizontal scale; 
contrary to a view sometimes expressed, such changes can and do take place in 
two-dimensional numerical experiments, and do not necessarily require an inter- 
mediate three-dimensional stage. The stable flows can be obtained by starting 
with initial conditions of similar form to the steady state (though the initial 
disturbance to conductive equilibrium need not be strong). It is not necessary to 
make the initial disturbance a pure eigenfunction of the linear equations, as 
long as it contains an appreciable component of the desired solution. As noted by 
Foster (1969) in a similar context, the horizontal mode that first attains sufficient 
amplitude to cause nonlinear interactions such that the temperature field is 
modified to fit it will be ‘locked-in’ and will dominate the flow pattern. A mode 
may win the race to nonlinearity either by being the fastest growing or by having 
larger initial amplitude. For R B R,, many modes have large positive growth 
rates (according to linear theory) and the effect of initial conditions will be de- 
cisive. Such dependence on initial conditions has been found in many other 
studies of convection, both experimental (Krishnamurti 1970) and theoretical 
(Young 1974), and elsewhere in hydrodynamics (Segel 1966). 

The direction of flow is not predicted at all by the linear or mean-field equations 
(Baldwin 1967), which are invariant under change of sign. By inspection of 
solutions like those of figures 2 ( a )  and 4(c), one sees that, for the odd modes 
(i.e. those with horizontal wavenumber I = 1,3 ,5 ,  ...), the essential topology of 
even the developed flow remains the same whether the flow is northwards or 
southwards along the axis. The two cases are mirror images (reflected about the 
equator 8 = &r), and it is easy to show that if one satisfies the equations of 
motion then so does the other. For the even modes this is not true, as can be 
seen by comparison of the flows of figures 2 ( b )  and ( c )  : one has a single maximum 
of temperature near the equator, the other has two near the poles. 

In  the range where two-cell flows occur, the present results indicate that the 
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2E mode is preferred a t  low Rayleigh numbers and the 2P mode a t  higher R. 
This behaviour is largely caused by the imposed axisymmetry, and is most 
easily understood by considering the matter falling from the cold outer surface. 
The cold boundary dominates the behaviour of the system, because it is the 
origin of the non-uniformities in the flow (everywhere else being uniformly 
heated), and it is there that the horizontal temperature gradients aT/aO, which 
drive the motion, are established as the thermal boundary layer ‘peels off ’. In  
an axisymmetric flow, when matter falls a t  the equator it falls in a broad ‘sheet’ 
extending round the circumference, which enables a greater volume of cold fluid 
to be carried down from the boundary than in the alternative 2P configuration, 
when i t  falls from the poles in thin columns. In  the 2P mode, on the other hand, 
the cold matter descends in a column along the axis, and cannot be shaken so 
easily by an axisymmetric perturbation, so the 2P mode is preferred at large R. 

4.3. Effect of Prandtl number when A = 0 

As indicated by figure 3 (a) ,  my computed flows show only a gradual variation 
with Rayleigh number, so to investigate the effect of Prandtl number, it  suffices 
to examine solutions at one typical Rayleigh number. I therefore computed the 
single-cell solutions at  R = 10000 for P = 0.2, 1 and 5 ,  a range of P which allows 
a dramatic variation in the flow with A > 0 ( $ § 5  and 6 below). The computed 
velocity and temperature fields all looked very similar to that of figure 2(a),  
and also to that of figure 2 of Hsui et al. (1972), which shows their solution with 
P = 00, R = 10000. (The computed vorticity fields show more variation, but 
solving (17) smooths out the differences.) Figure 3 (b )  shows that, compared with 
the flow of Hsui et al., my flows with finite P use more kinetic energy (measured 
crudely by and lower distortion of the temperature field (measured by 
T,,,) to transport the same amount of heat to the surface. This is the trend 
reported by Veronis (1966a) in his numerical study of Rayleigh-BBnard con- 
vection. The present results with P = 5 might be expected to agree well with 
those of Hsui et al. with P = co, and indeed we do find almost the same values 
for T, and T,. But the former have @ about 20% larger than the latter, even 
though the stream function with P = 5 (not shown) is rather more symmetric 
about the equator, so that the total kinetic energy of the two flows may well 
be about the same, with the asymmetric flow of Hsui et al. having higher velocities 
in one hemisphere and lower velocities in the other. 

The two-dimensional numerical experiments of Moore & Weiss (1973) on 
BBnard convection suggest that the Prandtl number could be lowered indefinitely 
without greatly affecting the present computed flows, but laboratory experi- 
ments (Krishnamurti 1970) suggest that three-dimensional time-dependent 
convection would occur in practice. 

5. Results with non-zero rotation and ‘large’ Prandtl number 
To obtain examples of flows dominated by viscous effects, even when a sub- 

stantial overall rotation is present, we look at the case A - 103, P = 5.  In order 
to examine as wide a range of R, A and P as possible I have used the available 
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computing time to compute many cases at moderate resolution (16 x 16; see 
figure l ) ,  rather than a few at high resolution (e.g. 50 x 50). The computations 
are therefore restricted to R 5 20Rc, because to resolve adequately the thermal 
boundary layer when R 2 20R, would require substantially more than 16 points 
in r. The Taylor number is similarly restricted to the range 0 < A < 4 x lo3 by 
truncation errors, which manifest themselves most obviously in the form of 
spurious angular momentum entering through the nominally ‘ stress-free ’ surface. 
This spurious angular momentum becomes unacceptably large in well-developed 
flows with larger (R, A) than are dealt with here. 

5.1. Onset of instability 

For A = 200 and A = 1000, the critical Rayleigh number found in these numerical 
experiments was within I yo of the value predicted by the linear calculations of 
Roberts (1968). For A = 4000, instability set in a t  R = 1 3 . 0 ~  lo3 compared 
with Roberts’ value of R = 12.0 x 103. This discrepancy may reasonably be 
attributed to truncation errors in my program, the effect of which may be ex- 
pected to increase with A. For, at a given growth rate, as A increases, we are 
looking at the same small difference but between increasingly large terms in 
( 1 3 ) ,  which is the formal reason why Re increases with A. Therefore an error 
which is a fixed proportion of one of the terms will have an increasing effect as 
the terms themselves increase with A. 

Other results that agree with linear stability theory are the absence of over- 
stable (growing oscillatory) modes when P = 5, and the measured growth rates 
of modes other than I = 1. Both Roberts’ linear calculations and the present 
results show the odd modes to be more unstable than the even at most Taylor 
numbers, but that at A = 1000 both are almost equally unstable. 

5.2. SteadyJlows with P = 5, A > 0 

Stability calculations indicate that the complexity of the flow increases rapidly 
with A: the marginally stable state involves increasingly many spherical har- 
monics (Bisshopp 1958). This tendency may be clearly seen in the fully developed 
steady flows shown in figure 4, all of which were started from a weak single-cell 
disturbance, and have R 5 3Rc. We see that the preferred mode is a single cell 
for weak rotation (0 < A 6 200), a double cell (2E) for moderate rotation 
(A = 1000) and a triple cell for larger rotation (A = 4000). For greater R/Rc the 
situation is more confused because more than one stable flow is possible, as 
discussed below, but the prevailing tendency is still for the wavenumber I to 
increase with Taylor number A as indicated in figure 1 (b) .  

The tendency for the number of cells to increase with A reflects the way in 
which rotation constrains convection: motions perpendicular to the axis are 
inhibited by Rayleigh’s angular-momentum criterion (Chandrasekhar 1961, 
3 66). Therefore as A increases the convection cells are compressed in the direction 
perpendicular to the axis, so that each fluid particle does not have to move so 
far perpendicular to the axis; if the rotation is strong enough, axisymmetric flow 
will tend to take the form of a succession of cells one outside the other. The flow 
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FIGURE 4. Effect of increasing Taylor number A on steady axisymmetric convection in a 
rotating fluid sphere with Prandtl number P = 5 and Rayleigh number R 5 4R,. Con- 
ventions as in figure 2; v is the azimuthal velocity (relative to the initial uniform rotation 
a), L = vw + fiaa is the angular momentum per unit mass. All started from a single-cell 
perturbation to static equilibrium. Note the increase in wavenumber with A. 

A R R/Rc max$ maxT m a x r  maxv maxL 

(a) 200 8 000 2.6 1.00 0.128 102 12.3 36.7 

(c) 4000 30000 2.5 1.41 0.107 728 29.2 160 
( b )  1000 10000 1.5 0.845 0.113 235 12.6 73.3 

of figure 4 ( c ) ,  with 1 = 3, is showing this tendency, but the present computations 
do not extend to high enough A to show it more dramatically. Non-axisymmetric 
convection is likewise compressed perpendicular to the axis, into the form 
shown by Busse (1970a). 

We see that, oace the flow has developed, it distorts the initially spherically 
symmetric temperature distributio:i as in 54. Figure 5 shows a plot of thermal 
efficiency 111 = T , ( O ) / T ,  against R/Rc for some typical flows. Note that the 



64 

r 
A .  D.  Weir 

M 

7 1 - 5 10 20 

RfRc 

FIGURE 5 .  Thermal efficiency M = T,(O)/T, against Rayleigh number. For P = 5 ab- 
scissa is RIR,; for P = 0-2 it is R/Ro (of. figure 1) .  

+ * a 0 0 V 
Prandtl number, P 5 5 5 0.2 0.2 0.2 

Wavenumber, 1 1 2E 3 1 1 1 
Taylor number, A 200 1000 4000 200 1000 4000 

strength of the convection is fairly well predicted by R/Rc and depends only 
weakly on A. This reflects the success of calculations of convection based on 
expansions in e = [(R/R,)- 114 such as those by Veronis (1959). For given 
(A, R), figure 5 shows only the mode with the highest M ,  which here turns out 
to be that selected by the marginal-stability equations. 

The distortion of the total angular momentum L from the initial cylindrical 
configuration measures the azimuthal velocity v. In  the flow of figure 4 ( b ) ,  for 
example, fluid of low angular momentum is pushed out from the axis in high 
latitudes, to form regions of negative v. Figures 4 ( b )  and 6 ( b )  show that the 2E 
mode produces an equatorial acceleration and the ZP mode an equatorial de- 
celeration. In  the single-cell solution of the linear equations, the equator is a 
line of w = 0. The increasing departure from this as R/R, increases from figure 
4 (a) to figure 6 (a )  reflects the increasing strength of the nonlinear terms in (15). 
Nevertheless in the flows shown in figures 4 and 6 the distortion of L from its 
initial cylindrical configuration is not large, which implies that L, = vw (that 
part of the angular momentum which has been transported by the meridional 
circulation) is sizeably less than the initial part Lo = Qw2. But in calculations 
with P = 5 and R 2 lOR,, where the meridional circulation is much stronger, it  
can happen that lL31 2 Lo. In  such calculations, it  was found that appreciable 
spurious angular momentum had entered the system, because of the discretiza- 
tion errors a t  the surface mentioned in $3;  the parameter 

e, = l vwdV/ lQw2dV,  (25) 
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FIQURE 6. Steady flows at  higher R/Rc with P = 5, A > 0. Conventions as in figure 4. 

A R R/Rc max@ maxT maxc  maxv maxL 

(a) 1000 40000 6.4 5.33 0-078 325 51.3 68.8 
( b )  200 16000 5.2 2.05 0.089 350 18.4 30.9 

which would be zero if angular momentum were perfectly conserved by the 
numerical scheme, reached the unacceptable level of leLl 2 0.2 before even a 
quasi-steady state had been established. 

For flows with lower (R, A) this leak of angular momentum still existed, but 
was sufficiently sIow that a quasi-steady state formed after 3 or 4 turnover times. 
Such quasi-steady solutions, of which those in figures 4 and 6 are examples, 
have leLl 5 0.04 and should be a good approximation to the true steady solution 
of the analytic equations. If the computation continues forward in time from 
a quasi-steady state, the parameter eL changes monotonically by N 2 %  per 
turnover time, while the meridional fields $ and T change rather more slowly. 
For a 2 P  flow, e, > 0;  for a 2E or single-cell flow, eL < 0. 

Just as the form of v reflects the balance of terms in (15), so the form of 
reflects the balance in (13), and in particular the importance of the nonlinear 
term div (ug’) in (16). Thus in the flow of figure 6 (a) ,  with R = 6*2R,, the maxi- 
mum of 6‘ has been carried further from the centre of the sphere than in that of 
figure 4 (a) ,  with R = 2-6R,. No solutions in which advection of vorticity domi- 
nates the other processes have been computed with P = 5 ,  because they would 
have strong meridional circulations and therefore be unrealistic because of poor 
numerical conservation of angular momentum. 

Numerical experiments can separate the individual terms in the equation of 
motion, thus giving insight into the dynamic balances in the flow. We fmd that 

5 FLM 75 



66 A .  D. Weir 

in all the present flows there is a local balance of terms: the viscous terms grow 
to meet whatever challenge is thrown at them, as in the ‘viscous regime’ of 
Moore & Weiss (1973). (In contrast, in their ‘advective regime’ (of large R 
and small P) the advection of vorticity was so strong that a fluid element could 
go several times round a cell before being seriously retarded by viscous forces.) 
The scale of the terms in (13) is set by the buoyancy term - (galr) (aT/aO), which 
is a maximum where the thermal boundary layer peels off the outer surface 
(where aT/aO is large) and a minimum near the centre (where g is small). 

The direct effect of rotation on the meridional flow, as measured by the terms 
proportional to SZ in (13), increases with the Taylor number A. In  the flow of 
figure 4(a,), with A = 200, the rotation terms are important in the dynamical 
balance only near the equatorial surface, where Q.Vv is a maximum and the 
buoyancy terms are small because iiT/aO = 0 at the surface. Elsewhere the 
magnitude of the rotation terms is less than 20% of the buoyancy terms; the 
dominant balance is between the latter and viscous diffusion. In  the flow of 
figure 4 ( c ) ,  on the other hand, A = 4000 and the rotation and diffusion terms 
have roughly equal inhibiting effect on the vorticity created by the horizontal 
temperature gradients. In  this flow, both Sand $ are almost directly proportional 
to gaT/aO, which shows how weak is the influence of advection of vorticity. 

5.3. Eflect of initial conditions when P = 5, A > 0 

Most of these computations were started by imposing a weak single-cell meri- 
dional circulation on an (unstable) state of conductive equilibrium, and the 
results show that a single-cell flow cannot be sustained for sufficiently strong A 
(see figures 1 ( b )  and 4). But, as in $4,  at certain (A, R) a range of stable solutions 
can be produced by using suitable initial conditions, while modes not included 
in this limited range cannot be sustained at that (A, R). For example, at A = 200, 
R = 16000, there are precisely three stable solutions: the 2P flow shown in 
figure 6 (b)  and a 2E flow and a single-cell flow like those of figures 4 ( b )  and (a) 
respectively. 

Of the two-cell flows the 2E mode is preferred a t  low R and the 2P a t  high R, 
as when A = 0. The explanation for this behaviour given in $ 4  is reinforced by 
considerations of angular momentum. In  the 2P mode, fluid of low angular 
momentum is transported towards the surface at the equator (as in figure 6b), 
so near the centre aL/aw is decreased from its original value, whereas it is in- 
creased near the surface, thereby stabilizing the outer regions against interchange 
instabilities according to Rayleigh’s criterion (Chandrasekhar 1961, $ 66). For 
given A, such angular-momentum instabilities become more of a threat to 
stability of a finite amplitude solution as v increases, i.e. as R increases, and the 
2E mode is less stable to them than the 2P, giving another reason why the 2P 
mode is preferred a t  high R. 
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6. Results with non-zero rotation and 'small' Prandtl number 
All the results in this section were obtained with a Prandtl number P = 0.2. 

The results indicate that this is sufficiently small to be typical of the range of 
P for which Coriolis and inertial forces dominate viscous effects, producing re- 
markable differences from the flows of $ 5 .  A few flows computed with P = 1 
showed very similar behaviour to those with P = 0.2. The range of ( R , A )  
covered (figure 1 b)  is governed by the factors listed in 5 5.  

6.1. Onset of instability 

As indicated by figure l (c ) ,  the present study shows that, when P = 0.2, a 
small disturbance to conductive equilibrium can grow as an oscillatory mode a t  
Rayleigh numbers below those for which monotonic growth can occur. The 
critical Rayleigh number R,(A) for the onset of this instability was found by 
extrapolating to zero the real part of the measured growth rate of a single-cell 
disturbance, giving 

(26) i 
R,(ZOO) = (2.35 5 0.1) x 103, 

~ , ( i o o o )  = (2.9 0.1) x 103, 

R0(4000) = (3.6 & 0.2) x lo3, 

where the uncertainties come from difficulties in measuring the growth rates, 
since the periods of oscillation involved are 2 2 ( rg /K) .  

Earlier linear stability calculations for the present model (Roberts 1968) did 
not encompass overstability for technical reasons, but the stability theory of a 
rotating plane layer heated from below (Chandrasekhar 1961; Weiss 1964) indi- 
cates that overstability should occur for sufficiently low P and high A. Such 
oscillations can occur only in a fluid of low Prandtl number, because, in a more 
viscous fluid (e.g. one with P = 5), the characteristic time rv = rg/v for viscous 
forces to take effect is sufficiently short that viscosity can set up a local balance 
of forces before oscillation can occur. The theory also suggests that, for a given 
configuration and given P, the period of overstable oscillations should increase 
as A decreases down to some limit A,(P) , below which overstability cannot occur. 
This trend was found in the present results, which indicate that Ao(O*2) is not 
much below 200 (see figure 1 c ) .  

Unsuccessful attempts were made to produce a steady subcritical solution of 
the form described by Veronis (1966b), by taking a steady solution at some 
(A, R)  as the initial condition for a run at (A, R') with R, < R' < Re. 

6.2. SteadyJlows with P = 0.2, A > 0 

For sufficiently high R, steady solutions are obtained with P = 0.2 and A = 200, 
1000 and 4000 (figure 1 c ) .  All of them have the same flow pattern, which is shown 
in figure 7 and is strikingly different from those of figures 4 and 6, which have 
P = 5. 

The most striking feature of the flow is the great distortion of the angular- 
momentum distribution: the initial state of constant angular velocity has been 

5-2 
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FIGURE 7. Steady convection with P = 0.2, A = 1000, R = 20000. Note the distribution 
of angular momentum L, characteristic of A 9 1, P < 1. Maximum values of each variable : 
$, 4.92; T, 0.0836; f;', 278; V, 7.96; L, 1.82. 

changed into one of nearly constant angular momentum. The angular momentum 
has been redistributed by the single-cell meridional circulation; fluid of low 
angular momentum is brought from near the north pole to the equator, and fluid 
of high angular momentum is taken from near the equator and transported to 
near the south pole, which results in an almost uniform distribution of angular 
momentum throughout the system. It is possible for angular momentum to be 
advected because the viscosity is low enough that a fluid particle can retain 
most of its angular momentum as i t  moves over a considerable distance. 

In  terms of the zonal velocity v, the initially antisymmetric distribution has 
been sheared round by the meridional circulation in the same way as for P = 5, 
but because the opposing viscous forces are weaker, the contour v = 0 can be 
sheared until it  is at  right angles to its initial location at  8 = in, rather than the 
modest inclinations reached when P = 5 (compare figure 7 with figure 6a). 

The basic reason for this behaviour is as follows. The system would like to 
convect, in order to get its heat out more efficiently, but is restrained from so 
doing by Rayleigh's angular-momentum criterion (Chandrasekhar 1961, 3 66). 
An axisymmetric fluid element can move outwards only if it  acquires the angular 
momentum appropriate to where i t  wants to go. If the viscosity is high, then 
it acquires the necessary angular momentum by viscous transfer from neigh- 
bouring fluid elements (as in the flows with P = 5), but if the viscosity is low 
(as here) it is easier for the system to create a region where the angular momentum 
is nearly constant, so that this constraint on the motions no longer applies. 

Another striking feature of the computed flows is that they differ only quanti- 
tatively from one another; all show the characteristic distribution of angular 
momentum, and have the single-cell structure necessary to maintain it. Attempts 
to create a multi-cell flow, by varying the initial condition from the usual weak 
single cell, were unsuccessful; the cell form shown in figure 7 appears to be the 
only stable solution for the (R,  A, P) concerned. Further, the physical argument 
presented above strongly suggests that this cell form, with its characteristic 
distribution of angular momentum, will be strongly preferred to other axisym- 
metric modes for all lower P, higher A and higher R. 

Because of this uniqueness of form, i t  is sufficient to discuss only one typical 
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flow in detail: we shall specifically consider that with A = 1000, R = 20000 
(figure 7), but most of the remarks apply to the other computed flows. 

The stream function and temperature fields resemble qualitatively those one 
would expect for a single-cell flow of medium strength. Figure 5 illustrates the 
quantitative agreement between all the computed single-cell flows. The flow 
strength M is almost ‘independent’ of A and P and depends only on the form 
of the meridional motion and on R/R,, provided one takes R, = R, for the 
points with P = 0.2. 

The vorticity distribution reflects the importance of advection of vorticity : 
the maximum of 5‘ lies near the surface, rather than near the axis (cf. figure 6a). 
Note that (16) implies that for steady flow of an inviscid fluid in an isothermal 
region 

which means that 5‘ is constant along streamlines, a situation not so very 
different from that found here (Batchelor 1966). Near the surface at the equator, 
where the velocities are greatest (look at $), advection of vorticity contributes 
a t  least as much to the balance (13) as do the buoyancy forces, and the two are 
balanced locally by viscous diffusion. The term 2 8 .  Vv, representing the con- 
straining effects of rotation, is small over most of the flow, because v is constant 
along axial cylinders. This is the formal expression of the angular-momentum 
argument presented above. 

Although the angular momentum L is constant over most of the flow, there 
is a steep gradient in L near the axis, caused by fluid of high angular momentum 
being pushed into a small cylindrical region surrounding the axis. Mathematic- 
ally, this gradient (and also the similar gradient in v) is caused by the boundary 
condition (21), i.e. v = 0 a t  w = 0, imposed to avoid having an infinite angular 
velocity v/w at the axis. This distribution of L, with its concentration of ‘field 
lines’ near the axis, resembles the distributions of magnetic field around an eddy 
suggested by Parker (1963) and found in numerical experiments by Weiss (1966) 
and Peckover & Weiss (1972). 

Gough & Lynden-Bell (1968) have pursued this analogy and argued that, 
although Rayleigh’s criterion favours a state of strictly uniform L, this would 
imply a singularity a t  the axis, unless L = 0, and therefore that, in practice, the 
convecting region would expel its angular momentum to other parts of the system, 
in analogy with the expulsion of magnetic field studied by Weiss. However, I 
think i t  more likely that the system would avoid a singularity at the axis by 
allowing a gradient in L in a small surrounding region, as in figure 7, though the 
present model cannot exclude the expulsion hypothesis, because the convecting 
region in the model is bounded by a stress-free surface, through which (in 
principle) no angular momentum can pass. A more elaborate model, in which 
this possibility is not excluded, is presented by Weir (1975), together with some 
preliminary results which suggest that, in fact, angular momentum is not 
expelled. 

Note that, despite the large changes in the distribution of angular momentum, 
the numerical scheme has conserved the total angular momentum of the system 
reasonably well: the flow in figure 7 has eL = -0.06 although leLl is slowly 

u. vly = 0, (27 1 
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FIGURES 8(a-c). For legend see facing page. 

increasing with time, as described in $5.2.  The computed zonal velocity field v 
has kinks near the centre, where r = s = 0 and the truncation errors in (A 4) 
are O(hi3) and becoming comparable to the true terms. These effects are parti- 
cularly great in the advection and diffusion terms, which involve the highest 
powers of w (in forms like w-"a(wnj)/aO). But the fictitious angular momentum 
vw manufactured thereby is numerically not very large and comes from only a 
very small proportion of the total volume (or mass) of the system, and so its 
contribution to the total angular momentum of the system should be negligible. 

Away from the axis (say, for r > i, sin O > O . l ) ,  viscous diffusion of angular 
momentum is small, and the balance in (15) is primarily between the Coriolis 
force and advection of angular momentum. Diffusion ensures a local balance, 
but is relatively small over most of the volume (less than 20% of t.he Coriolis 
terms). 
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FIGURE 8. Oscillatory solution with P = 0.2, A = 4000, R = 15000 at various times t’. 
Unit of time is T ~ / K ,  origin oft’ is arbitrary, period of oscillation is 2.0 units. 

t‘ max$ maxT m a x p  maxv maxL 

(a )  0 3.30 0.102 754 14-0 4.55 
(5) 0.4 1.72 0.114 291 10.9 5-04 
(4 0.8 2.99 0.119 699 10.0 5.02 
( d )  1.2 2.39 0.099 565 14.8 4.80 

ff 1 
(e) 1.6 2.48 0.130 669 10.6 5.43 

Kinetic energy E, as a function of time t‘ (with 1’ = 0 corresponding 
to (a)). 

6.3. Sustained oscillatory sows 
As indicated in figure l ( c ) ,  a Prandtl number of 0.2 is sufficiently low that 
oscillatory flows can be sustained over a range of R. These are the well-developed 
versions of the overstable modes of $6.1, and have all been followed from their 
start as a single weak cell. 
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Figure 8 shows one such case (with P = 0.2, A = 4000, R = 15 000) after it has 
settled down, having already gone through about 5 periods of oscillation. The 
pattern repeats itself regularly, as nearly as can be ascertained, but it is likely 
that, after another 10 or 20 cycles, truncation errors would allow sufficient 
spurious angular momentum to enter through the nominally stress-free boundary 
to destroy the regularity. 

The oscillation arises essentially because the Rayleigh number is too low for 
the buoyancy force to overcome completely the rotational constraint. As the 
buoyancy forces build up f; and +, so the Coriolis forces increase w and build up 
the rotational constraint 2 8 .  Ow to such an extent that i t  can actually reverse 
the motions. As the motion reverses, w falls and the cycle repeats itself. 

Figure S(f)  shows the variation of kinetic energy with time for this flow. 
For simple harmonic motion, where the inertial (nonlinear) effects are negligible, 
this graph would be sinusoidal with Ek = 0 once every half-period. For oscilla- 
tions primarily due to inertial effects (e.g. those described by Moore & Weiss 
1973), the kinetic energy does not vary by more than 10 or 20 yo in the course 
of an oscillation and the graph of Ek against time can be highly non-sinusoidal. 
In  the present case, Ek varies nearly sinusoidally with time, but falls not to zero, 
but to about half its mean value, indicating that inertial effects are significant 
but not dominant. Indeed, i t  transpires that the average magnitudes of the 
buoyancy, advection and diffusion terms in (13) are roughly equal. 

The flow of figure 8 has R > Re, the Rayleigh number a t  which the ‘exchange 
of stabilities’ takes place, and for such cases, stability theory predicts that small 
disturbances to conductive equilibrium must grow monotonically rather than 
as oscillations (Weiss 1964). This oscillatory solution exists because inertial 
effects reinforce the restoring effect of the Coriolis forces. For example, the 
inertia in the azimuthal motions leaves w still creating negative f; (as in a steady 
flow with positive 6) even when f; has become negative over most of the flow. 
The redistribution of angular momentum is not sufficient to nullify the rot,ational 
constraint, though a t  each peak of kinetic energy (e.g. at t’ = 0) ,  the flow looks 
remarkably like the steady flow of figure 7. 

Related to the importance of the inertial terms in this flow is the remarkably 
large amplitude of the motions: the convection cell turns over about four times 
in each period. For flows with lower R/R,, the amplitude is of course much smaller, 
declining to zero as R+ R,. 

7. Application to stars 
Many stars are known to be rotating, and this markedly affects their structure, 

luminosity and evolution (see, for example, Fricke & Kippenhahn 1972). Calcu- 
lations by Bodenheimer (1971) and others suggest that the observable luminosity 
and temperature of a normal (i.e. main-sequence) star depend only on its mass 
M and total angular momentum J, and are independent of the precise way in 
which the angular velocity varies within it. Unfortunately, J cannot be observed 
directly, and to compare theoretical models of stars with observations one has to 
infer J from V ,  the observed surface velocity at the equator, and to do so one 
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needs to know the internal law of rotation. Bodenheimer’s results show that for 
given M and V the predicted luminosity can vary by at least a factor of two 
depending on which of several plausible rotation laws is assumed. 

The most common assumption about the internal rotation of a star is that it 
is uniform, but Tayler (1973) suggested that (for stars sufficiently massive to 
have a convective core) a more consistent procedure would be to derive the 
rotation law in the core from the dynamics of convection and to deduce the law 
in the outer regions from that. He also gave heuristic arguments based on the 
mixing-length model of convection that suggested that the angular momentum 
per unit mass, rather than the angular velocity, would be constant in the core. 
One motivation for the present study was to see to what extent large-scale 
convection (as distinct from the secondary circulations described by Tayler) 
could redistribute angular momentum, and in particular whether the distribu- 
tion hypothesized by Tayler could arise. 

The present model does have the basic geometry of a stellar core, and the 
steady flows of $6, with P 1 and a stress-free outer surface, do indeed have 
the specific angular momentum nearly uniform throughout the ‘core ’, as hypo- 
thesized by Tayler, but how well does the model resemble a real convective core? 
The qualitative features of the flow should be independent of details like the 
Boussinesq approximation and the neglect of the centrifugal force. The ‘ molecu- 
lar’ Prandtl number in a star is of order and even that based on eddy 
viscosity and conductivity (parameterizing the smaller scales of motion) should 
be P, w 1, which still gives constant L in the model. A stress-free boundary 
condition is clearly more realistic in a star than a rigid one (which suppresses 
the redistribution of L),  though to allow explicitly for the overlying stably 
stratified region would be even better. Preliminary results with a model that 
does so (Weir 1975) indicate that the distribution of angular momentum in the 
model core is not greatly changed from that of Q 6: the expulsion of angular 
momentum suggested by Gough & Lynden-Bell(1968) does not take place. The 
assumption that the dominant length scale of the convection is comparable to 
the depth of the core may be justified by the argument that the largest scales 
are the most efficient (Simon & Weiss 1968), by mixing-length theory (which 
takes the scale as the local pressure scale height, which is of the same order as 
the depth of the core; Schwarzschild 1958, p. 254), and by the numerical experi- 
ments of Graham (1975). 

For the moderate Taylor numbers explicitly examined in $05 and 6 ,  the 
stability theory of Roberts (1968) indicates that axisymmetric modes may be 
marginally preferred, as the tendency of rotation to compress the horizontal 
scale of the motion (Veronis 1959) has not become strong enough to overcome 
the natural tendency of convection to have its horizontal and vertical scales 
comparable (Rossby 1969). But, because of the huge lengths involved, the 
Taylor number of a stellar core is at least three powers of ten larger, even when 
based on eddy viscosity, and the stability theory for such high A (Roberts 1968; 
Busse 1970a) indicates that marginal convection takes the form of a ring of 
thin cylindrical rolls aligned parallel to the axis, with azimuthal wavenumber 
m N A*. Since the Rayleigh number in a star is also enormous, such marginal 
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solutions are not directly relevant, but unpublished? experiments by Busse & 
Carrigan indicate that the effect of increasing R at such high A is to add extra 
rings of rolls to the marginal flow. In  such non-axisymmetric solutions, the sign 
of w alternates from roll to roll, ensuring a non-uniform distribution of L: the 
rotational constraint is overcome essentially by horizontal compression (cf. Q 6 ) .  
But these results refer to the situation where the Rayleigh number of a static 
sphere is slowly increased from zero; if a large-scale circulation like that of 
figure 7 has already been established by some other mechanism, then thermal 
convection will reinforce it, since the rotational constraint is weakened already. 
It should be possible to perform an explicit calculation to confirm the stability 
of such a flow to non-axisymmetric disturbances. 

I conclude therefore that, while the idea of a core of nearly uniform angular 
momentum has an attractive physical simplicity and has been shown in $6  to 
be dynamically possible, i t  may not be realized in practice because of the likely 
occurrence of highly non-axisymmetric motions. 
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scholarships from the Australian National University and the Cambridge 
Philosophical Society, for which I am grateful. I thank Nigel Weiss for his sus- 
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Herbert Huppert, John Huthnance, and Paul Gurbutt. The computations were 
performed on the IBM 370/165 of the Cambridge University Computing Service; 
I thank the Superintendent for a generous allocation of computer resources, and 
Peter Linington and Richard Stibbs, who wrote the plotting routines. I also 
thank Fritz Busse and some anonymous referees for constructive criticism of an 
earlier version of this paper. A preliminary account of some of these results was 
presented to the 19th Liage Astrophysical Colloquium (Weir 1975). 

Appendix. Details of the difference schemes 
We use a two-dimensional mesh with uniform spacings h = (J- 1)-1 and 

6 = r / (L  - 1) in r and 8 respectively, and let @& denote the value of any variable 
@ a t  the point ( r j ,  0,) = [(j- 1) h, (Ic - 1) S] a t  time tn = nAt. 

By integrating the first three terms of (2) over the box 

G r G rj+l,  ek-l 6 e 6 ek+l, dl 6 + G d1 + A# 

rj-4 6 r 6 rj+&, ek-& < 8 < ek++, q4 < 4 6 

and the last term over the smaller box 

we obtain the following formula for updating the temperature a t  the interior 
point ( r j ,  0,) : 

qk(%%+l- T?k) = 5kHAt -At{(TAe $)j+l,k - (TAe 

- - (TAr$lj, k+l + k-lIn+' 

+ K A t ( q k / V i k )  {(2ska'/h) [r?+&(Tj+l, k - T j k )  

+ r?-&(Tj-l,k-'jk)l + ('jS)-' [rjSk+fh(Tj,k+l-'jk) 

+ rjSk-fh(Tj,r-l- ' jk)I]n+*, (A 1) 
t Note added in proof. A preliminary account of these experiments has recently 

appeared in Science, 191, 81-83. 
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where 

and 

are the (exact) volumes of the large and small boxes, 

Ar @ j k  = @j+1, k - @ + I ,  k )  he @jk = @j, l i+ l -  @j, k-17 @jk = -( ; @?, + @$y), 
(A 3) 

where s, = sin 8,, r~ = sin 6, 8’ = sin (+6), 

and the rest of the notation is as in $42 and 3. The unknown TT&l appears on 
the right-hand side in the form of Fj,, but by simply regrouping the terms and 
dividing both sides by 5, one obtains an explicit expression for TTkfl. 

Note that at each time step t n  this scheme requires us to evaluate only half 
the TT,, namely those at alternate points on the mesh. The other half of the T. 
can then be evaluated on the next sweep, a time +At or one ‘half time step 
later, and will suffice to update the first half at time tn+ l .  As this applies also to 
the difference equations (A 4) and (A 7) for Av/At and A</At, by using such a 
‘staggered mesh’ we halve the computer time required, although the numerical 
solution of (17) is thereby complicated. 

Thus, by integrating the V2 term of (15) over J‘;, and the other terms over 
5,, one obtains 

’5 

rjsk(v$l- vA) V,,/At = Q[A,(r,”s:A,+) - A,(~?siA,j+)] 

+ Ae(rj 8, vjk  Ar +) - 44rj  
- 2 ~ { ( 2 ~ i d  AArSvjJ + (2r jh )  Ae(skc,vj~)} 

+ 

v j k  A, II.) 

+ q k l  v;,) ((2s; C’P)  Pj+l Vj+ l ,k  - T j  Z j k )  6+& 

+ s , -&(v j ,k - l sk - l -  “kS,)l), (A 4) 

vj-l,k - ri % j k )  rf-tl 
- + ( r j  [sk+g(vj, k+l Sk+l - vj?cSk) 

in which c, = cos 8, and the right-hand side is evaluated at tn+*. Again, this can 
be rearranged to give an explicit formula for the unknown v y j l .  

corresponding to  (13), 
we integrate (12) around the contour C j ,  joining the points (rj.+ 8k-l), (rj+l, 19,-~), 
(rj+l,  6,+1)  and (r,-l, 6,+1), except for the diffusion terms, where the integration 

shall need values of 

To obtain a ‘conservative’ difference formula for 

is around Cik, joining (rj-4, &-g), (rj+&, 6-& (rj++, &+g) and (rj-+, 8k+.$ We 

u x o  = (u<-v~,v<-wg,w~-u<) (A 5 )  

and u x 2 Q  = 2Q(wsin6,vcos0, -wsin6-ucos6). 

Suppose we have evaluated vj, k-l, v ~ + ~ , , ,  etc., at tn+&. Then the rotation term 
$ (u x 2 9 ) .  dI can be evaluated without interpolation along the contour Cjk, but 
because of the staggered mesh E = ( ~ ~ ) - ~ a ( v s ) / i % 3  and 7 = r-la(vr)/& will not 
be available a t  the required points for use in the advection terms and will have 
to be obtained by interpolation. The relevant terms represent only curvature 
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effects (their sum vanishes in the Cartesian limit r,  s-f 1) and are generally small, 
so that it is better to interpolate there than in the more important rotation terms. 
Therefore, in the following, we take 

t j k  = ( 2 r j S k 8 ) - l & ( S d ) ,  q j k  = (2vjh)-lA,(rd), (A 6) 

where d j k  = $ ( v ~ + ~ ,  k + vj-1,k + 2)j,k+1+ v j ,k - l ) .  Evaluating the required contour 
integrals and dividing by the relevant areas, we find 

(&" - c$c)/At = (4r jh8) -1  {2h(g; Tj, k-1) - 2h(gi Tj, k+l)}n+t 

+ 2R(4rjh8)-1 {(vj ,k- lSk- l )  (2h) + (2r j+18)  (v j+l ,kck)  

- (Vj, k+lSk+l) (2h) - (2rj-18) (Vj-l,kCk)}nf* 

+ v(rjh8)-1 {(hry' 8-1) [sg&(cj, k+lSk+l-  c j k s k )  

+sk=l*(cj,k-lSk-l - c j k s k ) l  

+ (8/h) [ ( c j + l ,  krj+l - c j k r j )  f (cj-1, kr j - l  - Ejkrj)l}n+' 

+ (4rjh8)-1 {2h(uc-vq)j ,k-1-  2h(uc-vq)j ,k+l  

+ (2rj+18) (vg- Wc)j+l ,k -  (2rj-1 (v t -wc) j -1 ,kp+4,  (A 7, 

where gi = ag(rj) .  It proved more convenient to do the computations in terms 
of Q = crs and so the equation actually used is obtained by multiplying ( A  7 )  
by r i s k  and regrouping the terms in Ejk to obtain an explicit formula for QTL1. 

T O  find $jk from Q j k ,  we expand $ in a double Taylor series about ( r j ,  Bk),  
and arrange values from neighbouring points to obtain an approximation to (17). 
One such formula is 

in which it is clear how the various derivatives are represented. This formula 
is used except f o r j  = 2 (near the centre) a n d j  = J -  1 (near the surface), where 
it breaks down, but an alternative formula applies: 

- Qjk  (cot ek/4ri" 

+ (2h2)-1 {$j-l, k-1 f- $j-l, k+l + $j+l, k-1 + $j+l, k+l 

-g($j,k+2+$j,k-2)-3$ik) 

{$j- i ,  k-1 f $j+l ,  k-1 - $j-i, k+i - $j+l, k+l} 

+ (4r j282)-1{$ j ,k+2+$j ,k-z -2$ik}+O(h2)  +0(8'). (A 9) 

Either (A 8) or (A 9) is solved for $jk  by successive relaxation (Smith 1965, 
p. 148). At each time step the iterations are deemed to have converged when 

max I $$;) - $j;-l) I /ma. [ $jkl < 8, (A 10) 
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where $-$I is the value of $jk after n iterations at  that time step, and E N 

a suitably small number. Convergence usually took only two or three iterations; 
using over-relaxation factors x > 1 yielded little improvement. 

Unfortunately, to advance (T, w, 5)  at the next half time step requires $ at 
precisely those points where we have not yet found it. But, remembering that 
Q satisfies (1 7), we find by manipulation of the Taylor series that 

$rik(2h-2 + 2r26-2)  

= h-,($j_l, k + $ j + l ,  k )  + T2 6-’( 1 + 4 6 cot 8,) pi, k-1-b r-’ 1 - 4 6 cot 8,) $ j , k + l  

- t ( & i , k + i f & i , k - i + & ~ + i , k + Q j - i , k )  +W4) +O(d4)7 (A 11) 

from which the missing values can be found to adequate accuracy (cf. Moore 
et al. 1973). 

The formula (A 1)  breaks down a t  the axis ( j  = 1 or k = 1 or k = L)  as various 
elements of area degenerate into lines, but by integrating (2) over appropriately 
shaped elements of volume surrounding the axis, we can retain a conservative 
scheme for T. One such elementary volume is the sphere V ,  of radius h surrounding 
the origin (or a slice A$ thereof). We define T, to be the average temperature in 
this volume, and take all references by (A I)  to Tl,k to refer to T,. Then the 
increase of heat in V ,  in the time interval (t”, t“+l) may be written as 

where A ,  and D, represent the fluxes of heat by advection and diffusion re- 
spectively through the face r = r,, ek-1 < 8 < 8 k + l  and the sum takes due 
account of the staggered mesh and the peculiarities at k = 1 and k = L (where 
the face is only ‘half-size’). The diffusion term is actually estimated from the 
flux through the face r = Bh, so that (A 1 2 )  becomes eventually 

T:+’ ( I  f C12’8k) = T,“( 1 - C 1 2 ’ 8 k )  + 2C1 S’Sk T2, k 

+ HAt + x’T2, k ( $ 2 , k + l -  $2, k-1)7 (A 13) 

where c1 = 1 2 ( ~ A t ) h - ~ r ; a .  

Owing to an algebraic error, almost all the calculations used half this value of 
cl,  so that T, as calculated is about Q yo too high when J = 16. The overall effect 
of this discrepancy has been verified to be negligible. 

Similarly, when k = 1 (the northern axis), we take Tj,l to be the average 
temperature over the ‘frustrum’ V, bounded by the axis, the face 8 = 8, ( = a), 
and the faces r = The diffusion terms are evaluated over the small box V; 
bounded by 8 = $6, r = rj**; the other terms are integrated over V, to yield 

(T;Y--ql)K = HKAt+Ti,z($i+l,,-$C-l,2)At 

- T,+l,l($j+l, 2 - &+l, 1 )  At + Tj - l , l ($ j -1 ,2  - &-1,1) At 

+ ( 2  sin2 caw4 E+&q+l,l- Fi,J + r L * P j - l , l -  Fj,l)I}. 

+ ~ A t ( c / V i )  { ~ ~ r ~ h S - ~ ( 1 7 i , ~ -  

(A 14) 

A similar formula holds when k = L. 
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The other axis conditions (21) are trivial to implement, as are the surface 
conditions (18). To implement the flux boundary conditions (20), we use the 
standard method of ‘dummy points’ a t  rJ+1 = 1 + h (Smith 1965, p. 32) and set 

vJ+l klrJ+l = vJ-l,k/PJ--l 

@J+l,k/r%+* = - @J-1,dr?-&* 

6, k = - ( @ J + l ,  k + @J-l ,  k)lh2* 

(A 15) 

(A 16) 

(A 17) 

and (remembering that @J,k  = 0) 

Then g can be evaluated at the surface by (19) as 
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